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Abstract. Numerical simulations are presented for flows of inelastic non-Newtonian fluids through periodic arrays
of aligned cylinders. The truncated power-law fluid model is used for the relationship between the viscous stress
and the rate-of-strain tensor. Results for the drag coefficient for creeping flows of such fluids have been presented
in a companion paper [1]. In this second part the effects of finite fluid inertia are investigated for flows through
square arrays. It is shown that the Reynolds-number dependence of the drag coefficient of a cylinder in the array
is of the form Cd ≡ F/(ηU) = k0 + k2Re2 + .. for small values of the Reynolds number Re ≡ ρaU/η, where
F is the drag force, U is the averaged velocity in the array, η = K(U/a)n−1 is a viscosity scale with K and n

the power-law coefficient and index and a the cylinder radius, and k0 is the drag coefficient for creeping flows.
The proportionality constant k2 depends on the way the drag coefficient and the Reynolds number are defined.
It is shown that the observed strong dependence of k2 on n can almost be eliminated by using length scales
different from a in the viscosity scales η used in the definition of Re and in the definition of the drag coefficient.
Numerical simulation results are also presented for the velocity variance components. Results for flows at moderate
Reynolds number, of order 100, are also presented; these are qualitatively similar to those for Newtonian fluids.
The value of the Reynolds number beyond which the flow becomes unsteady was related to the Newtonian fluid
case by rescaling. These results for moderate-Reynolds-number flow are compared against previously published
experimental data.
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1. Introduction

In a companion paper [1] we have presented numerical simulation results for the creeping
flow of inelastic non-Newtonian fluids through arrays of cylinders. The effects of fluid inertia
in these flows is the subject of this second part.

As is described in [1], the main issue is the determination of the drag coefficient for a
cylinder in the array, and most early studies have been restricted to creeping flows of New-
tonian fluids. More recently, flows with small-but-finite and intermediate Reynolds numbers
Re = ρaU/µ have been studied, where ρ is the fluid viscosity, a is the cylinder radius, U is
the averaged velocity in the array and µ is the fluid viscosity. Edwards et al. [2] and Ghaddar
[3] calculated the on-axis flows (i.e., transverse flows along an axis of the array) through
periodic arrays of cylinders at intermediate Reynolds numbers. Koch and Ladd [4] presented
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a full investigation of the off-axis transverse flows through square arrays and the transverse
flow through random arrays.

Koch and Ladd [4] showed that, for Newtonian flow at small Reynolds numbers, the first
two terms in an expansion of the drag coefficient Cd of a cylinder in the array in Re are

Cd ≡ F

µU
= k0 + k2Re2 (Re � 1), (1)

where the coefficients k0 and k2 depend on the solid area fraction (φ) of the array and k2 also
depends on the angle θ between the mean flow direction and the axes of the array. This result
is also more generally valid for the inertial correction to Darcy’s law for flow through porous
media [5]. Experiments on flow through porous media support an inertial correction that is
linear in Re instead, but a transition between (1) and a linear regime is found at Re ≈ 3 for
flow through periodic arrays of cylinders that are placed randomly in a unit cell of the array
[4].

For Newtonian fluids, the dependence of the correction factor k2 on φ is significant. At
small φ, it is dominated by the fact that the drag coefficient for a single cylinder in an
infinite medium does not satisfy (1), making k2 singular at φ = 0 and very large at small
φ. For concentrated arrays, the fluid has to be squeezed through the narrow gaps between the
cylinders, causing the drag force (both k0 and k2) to become very large and singular at closest
packing (the area fraction at which the cylinders touch). Koch and Ladd [4] also showed that
for small Reynolds numbers the mean flow direction is further away from the axes of the array
than is the drag force.

In this paper, we resolve the form of the inertial correction to the drag coefficient for
inelastic fluid flow through square arrays. In [1] it is shown that creeping flows through arrays
of cylinders are dominated by shear, not extension. As in [1], we use the truncated power-law
model for the relation between the viscous part of the local stress tensor τij and the rate-of-
strain tensor Eij in the fluid [6, Chapter 4]:

τij = 2ηEij, (2)

with

Eij = 1

2

(
∂Vi

∂xj

+ ∂Vj

∂xi

)
, (3)

and the effective viscosity

η =
{

K�(n−1)/2 if � ≥ γ̇ 2
0 ,

η0 if � ≤ γ̇ 2
0 ,

(4)

where γ̇0 = (η0/K)1/(n−1) and � = 2EklEkl is the second invariant of the rate-of-strain tensor
(summation over the indices k and l is presumed). K and n are the power-law coefficient and
index, respectively. The case of n = 1 corresponds to a Newtonian fluid; n < 1 provides a
model of a pseudoplastic or shear-thinning fluid and n > 1 corresponds to a shear-thickening
fluid. As in [1], we shall consider here the range 0·5 ≤ n ≤ 1·5, and choose γ̇0 sufficiently
small such that its value does not affect the results (corresponding to a power-law fluid model).
Since the effective viscosity is no longer constant throughout the fluid, the Reynolds number
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Figure 1. Velocity fields for on-axis flows of a shear-thinning fluid (n = 0·5) at solid area fraction φ = 0·3, at
different Reynolds numbers: (a), Re = 0, (b) Re = 22·5 and (c), Re = 31·0. The velocity field at Re = 31·0 is
unsymmetrical and unsteady. The arrows have uniform length and indicate only the direction of the velocity.

will be defined as Re = ρaU/η, where η is a viscosity scale that we choose initially equal to
ηa ≡ K(U/a)n−1. The drag coefficient Cd is defined by

F = Cd(φ, n, Re, θ) η U. (5)

The numerical method presented in [1] is used in this study. In Figure 1, resulting velocity
fields are shown for three different Reynolds numbers where the power-law index is 0·5 and
the solid area fraction 0·3. We see a symmetrical velocity field that is at steady state in the
creeping-flow regime (Figure 1a). A breaking of the fore-aft asymmetry is seen in the steady-
state result for a finite Reynolds number (Figure 1b). At the highest Reynolds number the
recirculation zones between the cylinders have become unsteady (Figure 1c). Qualitatively
similar behaviour was found in [4] for Newtonian fluid flow through square arrays.

On the other hand, the non-linear dependence of the stress tensor on the strain rate will
cause the drag coefficient to differ from the Newtonian results, as is evident from [1]. Previous
work on a related problem for finite Reynolds numbers has been reported in [7], where nu-
merical simulation results are presented for the flow of power-law fluids past a single cylinder
for three different Reynolds numbers (based on the cylinder diameter: Red = 5, 20 and 40),
with values of the power-law index n between 0·65 and 1·2 (at the highest Reynolds number
0·95 ≤ n ≤ 1·1). The results from that study show a significant dependence of the drag
coefficient on the power-law index.

Flows of inelastic non-Newtonian fluids through arrays of cylinders have been studied
experimentally, motivated by finding a friction factor for heat exchangers that are used for non-
Newtonian fluids. Adams and Bell [8] presented experimentally determined friction factors
(which can be converted into drag coefficients for individual cylinders) for flows of CMC
solutions through square arrays at solid area fraction φ = 0·5; other cylinder arrangements
were also studied. CMC solutions are shear-thinning fluids, the power-law index of the solu-
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tions used was in the range 0·58 ≤ n ≤ 1. Friction factor data were presented over a range of
Reynolds numbers. Prakash, Gupta and Mishra [9] collected experimental data from various
sources and developed a model, based on the flow through a channel of varying cross-section,
in an attempt to collapse the data. More recently, Prasad and Chhabra [10] presented exper-
imental data for flows of CMC solutions through triangular and staggered square arrays of
cylinders for solid area fractions lower than those considered in [8].

In Section 2 we examine how the velocity field in the array changes with Reynolds number
for different values of the power-law index, and how the drag coefficient Cd depends on the
Reynolds number of the flow in general. In particular, we show that a relationship similar
to (1) also holds for power-law fluids. Also, in Section 2 we present results for the drag
coefficient for both on-axis and off-axis flows at small, but finite, Reynolds numbers. Values
of the velocity variances for the corresponding cases are presented in Section 3. Results for
flows at moderate Reynolds numbers, of order 100, are presented in Section 4.

2. First effects of inertia on the drag coefficient

2.1. SERIES EXPANSION FOR FINITE-REYNOLDS-NUMBER FLOWS OF POWER-LAW

FLUIDS

In this section we demonstrate that a relationship similar to (1) also holds for the drag coeffi-
cient of power-law fluids. Koch and Ladd [4] proved (1) by considering a regular expansion
of the velocity and pressure in the Reynolds number, and we shall follow their derivation here,
but for power-law fluids.

Using the dimensionless position vector x∗ = x/a, velocity vector V∗(x∗) = V/U , and
pressure P ∗ = K−1a−nU−nP , the dimensionless equations of motion at steady state are

∂V ∗
j

∂x∗
j

= 0, Re
∂

∂x∗
j

(
V ∗

i V ∗
j

) = −∂P ∗

∂x∗
i

+ ∂τ ∗
ij

∂x∗
j

, (6)

where

τ ∗
ij = 2(n+1)/2(E∗

klE
∗
kl)

(n−1)/2E∗
ij, E∗

ij = 1

2

(
∂V ∗

i

∂x∗
j

+ ∂V ∗
j

∂x∗
i

)
. (7)

Introducing the expansions

V∗ = V(0) + ReV(1) + ... and P ∗ = P (0) + Re P (1) + ... (8)

we have

∂V
(m)
j

∂x∗
j

= 0 for all m, (9)

0 = −∂P (0)

∂x∗
i

+ 2(n+1)/2 ∂

∂x∗
j

(
(E

(0)
kl E

(0)
kl )(n−1)/2E

(0)
ij

)
, (10)

∂

∂x∗
j

(
V

(0)
i V

(0)
j

)
= −∂P (1)

∂x∗
i

+ 2(n+1)/2 ∂

∂x∗
j

(
(E

(0)
kl E

(0)
kl )(n−1)/2E

(1)
ij

+ (n − 1)(E
(0)
kl E

(0)
kl )(n−3)/2E(0)

rs E(1)
rs E

(0)
ij

)
. (11)



Flows of inelastic non-Newtonian fluids through arrays of aligned cylinders 85

Figure 2. Inertial contribution Cd − k0 to the drag
coefficient as a function of Reynolds number for on-
axis flow (open symbols) and off-axis flow at the
symmetry angle θ = π/4 (filled symbols). The lines
indicate the asymptotic result (12). (�), n = 0·5,
φ = 0·05; (�,�), n = 0·5, φ = 0·3; (◦,•), n = 0·5,
φ = 0·5. The data for off-axis flows are shifted
vertically by one unit for clarity.

Figure 3. Variation of k2 with solid area fraction φ at
different values of the power-law index: (�), n = 1;
(
), n = 0·5 and (©), n = 1·5. The solid diamonds
(�) are results for n = 1 by Koch and Ladd [4]. The
solid lines at low solid fraction were obtained from (20)
with H = Lg , and using k2(φ, n = 1) from the dilute
theory (14) by Koch and Ladd [4] for Newtonian flu-
ids. The solid line at large φ indicates the lubrication
theory by Koch and Ladd [4] for Newtonian fluids. The
dashed lines are the lubrication scaling (13) where we
have used the numerical simulation result at φ = 0·6 to
obtain the proportionality constant.

In the O(Re) momentum equation (11) we have used a Taylor series expansion to obtain the
contribution from the viscous stress. As the local viscosity is a function of an invariant (which
has reflectional symmetry) of the rate-of-strain tensor, the creeping-flow velocity field V(0) is
an even function of the position vector x∗. Consequently, P (0) is an odd function of position.
Then the left-hand side of (11) is odd so that P (1) is even and V(1) is odd. Hence there is no
contribution of O(Re) to the drag. This argument can be repeated for the higher-order terms
in the expansion and we conclude that

Cd(φ, n, Re, θ) = k0(φ, n, θ) + k2(φ, n, θ)Re2 + ..., (Re � 1), (12)

which is a generalisation of the result for Newtonian fluids (n = 1) derived in [4].
Our numerical simulations confirm (12). Examples are shown in Figure 2 for both on-

axis and off-axis flows. Results for k0 have already been presented in [1]; the main problem
addressed in the rest of this section is therefore the determination of k2.

At low solid area fractions the Reynolds number Re has to be very small in order to
obtain k2. To ensure that the flow approaches the creeping flow regime throughout the fluid
the Reynolds number based on the distance between the cylinders should be small as well,
requiring that Re � φn/2. On the other hand, the difference in drag coefficient for flows at
very small Reynolds number can be dominated by numerical error. However, the dependence
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of the drag coefficient on Reynolds number was gradual enough in all the cases simulated here
so that it was not necessary to use values of Re between 0 and 0·1 (cf. Figure 2).

Koch and Ladd [4] determined k2 for concentrated arrays by using a lubrication theory. It
was necessary to solve not only the leading-order equations (10) but also the next two equa-
tions of the expansion in the Reynolds number. This calculation is labourious for Newtonian
fluids, and with the nonlinear viscous terms for power-law fluids in mind we have not pursued
a full lubrication theory for non-zero Reynolds numbers. An order-of-magnitude analysis is
straightforward though. As argued in [1], V

(0)

1 is O(U/ε) when the mean flow is in the 1-
direction, where εa is the size of the gap between the cylinders; V

(0)
2 is O(U/ε1/2). Spatial

derivatives perpendicular to the gap scale with aε whereas those aligned with the gap scale
with aε1/2. The left-hand side of (11) is thus O(ε−5/2). From (11), V

(1)

1 can be shown to
be O(ε2n−5/2) and P (1) O(ε−2). In the next step of the expansion, the O(Re2) momentum
equation, the inertial term is then O(ε2n−4), so that P (2) is O(ε2n−7/2). The first contribution
from inertia to the drag coefficient is of the same order, so that we finally have,

k2(φ, n, θ) ∼ (
1 − (φ/φmax)

1/2
)2n−7/2

, φmax − φ � 1, (13)

where φmax is the maximum solid fraction (π/4 for square arrays, π/(2
√

3) for hexagonal
arrays). The proportionality constant may depend on n and θ , but not on φ (to leading order
in φmax − φ) and a full lubrication theory would be required for its determination.

Koch and Ladd [4] also determined k2 analytically for flow of Newtonian fluids through
dilute arrays by using the point-force approximation. Their result is

k2φ = 0·0286

b2
− 0·0348

b3
+ 0·0146

b4
, (14)

with b = log φ−1/2 − 0·738. We shall use this result below to obtain an approximation for
power-law fluid flow.

2.2. NUMERICAL RESULTS FOR ON-AXIS FLOWS

The values of k2 at various area fractions and power-law indices have been obtained by cal-
culating the drag coefficient at several Reynolds numbers and then applying a least squares
regression analysis. Typically, flows at five different Reynolds numbers were simulated and a
second-order polynomial in the square of the Reynolds number was used to fit the data. The
Reynolds number was not an input parameter of the problem; in each simulation a pressure
drop over the unit cell was prescribed and the resulting averaged velocity in the cell was
calculated (Cd was then obtained from (5)).

Figure 3 shows k2 for on-axis flows through square arrays as a function of area fraction for
n = 0·5, 1 and 1·5. Also shown are numerical simulation results in [4] for n = 1, with which
the present results are seen to agree. A very pronounced dependence of k2 on both the solid
area fraction and the power-law index is observed.

As discussed in [1], the variation of the drag coefficient with n depends of course on the
way in which the drag coefficient is defined in the first place. The main dependence of k0

on the power-law index was shown in [1] to be caused by scaling the viscosity in (5) with
the cylinder radius and the averaged velocity in the array. A new drag coefficient C̃d was
introduced that does not depend on n:

F(Re = 0) = C̃d(φ, Re = 0)ηLU, (15)
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where ηL ≡ K(UL/L)n−1; UL = Uc/L with c half the distance between the cylinder centres.
L(φ, n) is defined such that C̃d does not depend on n (essentially the n-dependence is absorbed
by the lengthscale L(φ, n)). It was shown, however, that L is almost independent of n and we
presented the n-averaged value L(φ) for flows through several geometries. Assuming that L

is independent of n and comparing (15) with (5) then yielded an explicit expression for the
dependence of Cd on the power-law index,

Cd(φ, n, Re = 0) ≈ Cd(φ, 1, Re = 0)

(
φ

φmax

)(1−n)/2 (
L

a

)2−2n

, (16)

where L can be approximated by the half of the size of the gap between the cylinders.
The same argument can be used for the inertial contribution to Cd : we would expect k2

to depend strongly on n because of the choice of lengthscale (the cylinder radius) in (5). We
shall therefore consider the extension of (15) to finite Reynolds numbers and write

C̃d(n, φ, Re) = k̃0 + k̃2Re2 + ..., (17)

where k̃2 = (L(φ)/a)2n−2 (φmax/φ)(1−n)/2 k2. It is shown in [1] that k̃0 does not depend
significantly on the power-law index; we shall now investigate the dependence of k̃2 on n.
However, we still expect this dependence to be significant, because the choice of lengthscale
arises again in the definition of the Reynolds number. We therefore introduce a new Reynolds
number R̂e = ρaU/ηH , in which the viscosity scale ηH ≡ K(UH /H)n−1 is based on a length
scale H(φ, n) and a velocity scale UH = Uc/H (where 2c is the dimension of the unit cell),
which will be chosen below,

R̂e =
(

H(φ, n)

a

)2n−2 (
φmax

φ

)(1−n)/2

Re. (18)

The dependence on φ arises from the ratio c/a = φmax/φ. The inertial correction (k̃2Re2) in
(17) is now written as k̂2R̂e

2
. The coefficient k̂2 is related to k2 through

k̂2 =
(

L(φ)

a

)2n−2 (
H(φ, n)

a

)4−4n (
φmax

φ

)(n−1)/2

k2. (19)

We shall now define H(φ, n) such that k̂2(φ, n) does not depend on n. We can obtain H(φ, n)

from the simulation results through

H(φ, n)

a
=

(
k2(φ, n)

k2(φ, 1)

)1/(4n−4) (
φmax

φ

)1/8 (
L(φ)

a

)1/2

. (20)

H/a decreases very strongly with increasing area fraction, so in Figure 4 we show results
for H/Lg instead, where Lg = ((φmax/φ)1/2 − 1)a is half the minimum gap size between
the cylinders. The results are shown together with those for L/Lg. Both H and L are almost
proportional to Lg. However H/Lg, unlike L/Lg, does show some dependence on the power-
law index, especially at intermediate area fractions. It is also seen from Figure 4 that H is
larger, and L smaller, than the gap dimension Lg. Substitution of (13), together with the
lubrication theory for L/a from [1], in the right-hand side of (20) shows that at large φ,
H/a ∼ (φ/φmax)

1/4, but the proportionality factor is a power of the corresponding factor
in (13), which is expected to depend on n. Therefore, we cannot use (13) to determine the



88 P.D.M. Spelt et al.

Figure 4. Length scale H which is used in the scaling
of the Reynolds number to obtain a dimensionless
inertial contribution to the drag that is independent
of the power-law index. H has been made dimen-
sionless with half the minimum gap size between the
cylinders Lg = ((φmax/φ)1/2 − 1)a. (�), n = 0·5;
(
), n = 1·5. The filled circles show the length scale
L which yields a drag coefficient for creeping flows
that is independent of n.

Figure 5. Variation of k2 with the angle θF that the
applied force makes with an axis of the array for
power-law fluids (n = 0·5, open symbols) and New-
tonian fluids (filled symbols) for solid area fractions:
(�), φ = 0·1, (
), φ = 0·3. Also shown are Koch
and Ladd’s [4] results (+) for φ = 0·1, n = 1.

applicability of a scaling argument beyond the range of n simulated. But for φ ≥ 0·6, no
significant dependence on n should be expected for 0·5 ≤ n ≤ 1·5.

We have used (20) (with H approximated by Lg) and (14) to obtain an approximation to
k2 for power-law fluid flow through dilute arrays; the result is shown in Figure 3. For n = 1·5
this works very well; for n = 0·5 close inspection shows that the results do converge to this
approximation, but only slowly.

2.3. OFF-AXIS FLOWS

For creeping flows of Newtonian fluids the drag coefficient is independent of flow direction
and the drag force is aligned with the averaged fluid velocity. In [1] a small dependence of
the drag coefficient on flow direction (a few percent) was found for creeping flows of shear-
thinning fluids. Also, the averaged fluid velocity was found to be significantly misaligned with
the drag force. The correction to the drag coefficient due to inertia has been shown in [4] to
exhibit a strong angular dependence for Newtonian fluids and a small misalignment between
drag force and averaged fluid velocity was also found. We now investigate the behaviour of
shear-thinning fluids in this case.

In Figure 5 results are presented for the ratio of k2 for off-axis flows of shear thinning fluids
(n = 0·5) and its corresponding on-axis value. θF is the angle between the drag force and an
axis of the array. Results for shear-thinning fluids (n = 0·5) and Newtonian fluids show the
same trends: at high area fractions, k2 becomes independent of θF , whereas at low values of
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Figure 6. First inertial contribution β2 to the ratio
tanθ/tanθF as a function of the angle θF that the
applied force makes with an axis of the array for
power-law fluids (n = 0·5, open symbols) and New-
tonian fluids (filled symbols) for solid area fractions:
(�), φ = 0·1, (
), φ = 0·3. Results for n = 1 at
φ = 0·1 by Koch and Ladd [4] are indicated by +.

Figure 7. Dimensionless inertial contribution to the

dimensionless velocity variance, R
(2)
11 (defined in

(23)), as a function of the solid area fraction φ at
different values of the power-law index: (
), n =
0·5; (�), n = 1 and (©), n = 1·5. The lines at
large solid fraction are the lubrication scaling (27),
where we have used the numerical simulation result
at φ = 0·6 to obtain the proportionality constant.
The lines at low φ correspond to the asymptotic res-
ult (26) for Newtonian fluids; for power-law fluids
the result based on (29) is shown, with Zij = Lg

using R
(2)
ij (φ, n = 1) from (26).

φ, k2 becomes much larger for off-axis flows. This trend at low φ is even more pronounced
for shear-thinning fluids than it is for Newtonian fluids.

In Figure 6 the first inertial contribution to the misalignment between the drag force and
the averaged velocity is shown. For creeping flows of shear-thinning fluids it is shown in [1]
that the averaged velocity is more aligned with the nearest axis of the array than the drag force
for φ = 0·3, while the opposite is true for φ = 0·1. Denoting the angle between the superficial
fluid velocity and the nearest axis of the array by θ , and the angle between the drag force and
the same axis of the array by θF , we define

tan θ = [
β0(n, φ, θF ) + β2(n, φ, θF )Re2 + ...

]
tan θF . (21)

The results for β0 have been presented in [1]; β2 as a function of θF is shown in Figure 6
for different solid area fractions, for shear-thinning fluids (n = 0·5) and Newtonian fluids.
All results for β2 are negative, making the averaged fluid velocity more aligned with an
axis of the array than for creeping flows. We see that the results for shear-thinning fluids
are qualitatively similar to those for Newtonian fluids (both for the drag coefficient and the
direction of the averaged fluid velocity). Although this suggests a straightforward relation
between these results, the length scale that would have been required in the definition of the
Reynolds number (in (21)) to (potentially) eliminate the dependence on power-law index does
depend on flow direction and is not the same as L or H .
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3. First effects of inertia on velocity variances

The velocity variance tensor for on-axis flow (in the x1-direction) through a periodic array is
written as

vivj ≡ (Vi − V i)(Vj − V j) ≡ Rij(φ, n, Re) V 1
2
, (22)

where an overbar denotes the average over the unit cell. The dependence on Reynolds number
of Rij at small values of Re can be determined from the Taylor-series expansions (8) used in
Section 2.1. The O(Re) contribution to the velocity variance vanishes because the correction
to the velocity field of that order is an odd function of position. A similar argument holds for
higher order terms that are odd powers of Re and we can write

Rij(φ, n, Re) = R
(0)
ij (φ, n) + R

(2)
ij (φ, n)Re2 + ... (23)

As with the corresponding expansion for the drag coefficient, (12), our computations confirm
(23). In the following we shall present results for R

(2)
ij ; the creeping flow velocity variances

R
(0)
ij are presented in [1].

At each area fraction and power-law index we have performed simulations at about five
different Reynolds numbers and used a regression analysis to obtain R

(2)
ij . The results for R

(2)

11
are shown in Figure 7 as functions of area fraction at n = 0·5, 1 and 1·5. All values are
positive while the corresponding results for R

(2)

22 were all negative, indicating that the velocity
variance in the flow direction increases with Reynolds number whereas the perpendicular
component decreases (the flow tends to conform less to the geometry of the cylinders). There
is a monotonic decrease with increasing φ in these coefficients for Newtonian and shear-
thickening fluids, and a monotonic increase for shear-thinning fluids. This is in sharp contrast
with the results presented in [1] for R

(0)
ij , which were seen to be virtually independent of n.

For flows of Newtonian fluids through dilute square arrays, the velocity field (and hence
R

(2)
ij ) can be determined by using the point-force approximation, as discussed in [1] (Sec-

tion 5.1). The Fourier coefficient of the fluid velocity disturbance for dimensionless wavenum-
ber k is (see [1, Equation (25)]), in the Oseen approximation [4],

v̂(k) =
∑
k �=0

F · (
I − kk/k2

)
µ(2πk)2 + 4πiρck · U

, (24)

where c is the half spacing between the cylinders in a square array, and the summation is over
all the vectors of the reciprocal lattice. The dimensionless velocity variance components can
be expressed as single summations over wavenumber space,

Rij = V 1
−2 ∑

k �=0

v̂i (k)v̂j (−k). (25)

The resulting summations were carried out numerically, resulting in

R
(2)

11 = 0·171k2

b
− 5·62 × 10−4

φb2
, R

(2)

22 = 0·0232k2

b
− 5·62 × 10−4

φb2
, (26)

where k2 is given by (14) and b = log φ−1/2 − 0·738. The numerical simulation results are
seen to tend to this asymptotic result for Newtonian fluids for small values of φ.



Flows of inelastic non-Newtonian fluids through arrays of aligned cylinders 91

Also shown in Figure 7 are order-of-magnitude estimates from a lubrication scaling. As
mentioned above, we have not pursued a full lubrication theory (which would only yield the
proportionality constants) because of the highly nonlinear nature of the equations of motion.
Furthermore, a lubrication theory for the transverse velocity variance is not feasible; it can be
shown that its main contribution does not come from the narrow gap between the cylinders, but
from just outside the gap. For concentrated arrays the first terms in the expansion (8) for the
dimensionless velocity V ∗

1 in the narrow gap between the cylinders are: V
(0)

1 , which is O(ε−1);
V

(1)
1 , which is O(ε2n−5/2) and V

(2)
1 , which is O(ε3n−7/2) (of course, V

∗
1 is by definition equal

to unity for on-axis flow). The most significant contribution to R
(2)
11 , O(ε3n−3), is thus found

to arise from V
(0)

1 V
(2)

1 if n > 0·5:

R
(2)

11 (φ, n) ∼ (
1 − (φ/φmax)

1/2
)3n−3

φmax − φ � 1. (27)

In Figure 7 the agreement of the numerical results with this expression is seen to be good.
The strong dependence of R

(2)
ij on the power-law index is affected by the definition of

the Reynolds number. As with the drag coefficient, we can define a Reynolds number Re
′ ≡

ρaU/ηZ , where ηZ ≡ K(UZ/Z)n−1 is the viscosity scale based on a length scale Z(φ, n) and
a velocity UZ ≡ Uc/Z, and rewrite the expansion (23) as Rij(φ, n, Re

′
) = R

(0)
ij (φ, n) +

R
′(2)
ij (φ, n)Re

′2 + .... We define Zij such that R
′(2)
ij is independent of n. This results in

Zij(φ, n)/a =
(

φmax

φ

)1/4
(

R
(2)
ij (φ, n)

R
(2)
ij (φ, 1)

)1/(4n−4)

. (28)

In Figure 8 we have plotted the ratio Zij(φ, n)/Lg. Most of the values are somewhat larger
than half the minimum gap size (the solid line in Figure 8). The value of Zij can therefore be
replaced by the n-averaged value, denoted by Zij. The dependence of R

(2)
ij on the power-law

index is then given by

R
(2)
ij (φ, n) = R

(2)
ij (φ, 1)

(
φ

φmax

)n−1 (
Zij(φ)

a

)4n−4

, (29)

where Zij can be approximated by half the gap between the cylinders. In Figure 7 we have
combined (29) with (26) to obtain the behaviour of R

(2)

11 at small φ expected from this argu-
ment. This is seen to give a good approximation to the behaviour at small φ.

4. Moderate Reynolds number flows

4.1. DRAG COEFFICIENT

The results presented so far have been for the first effects of inertia at small but finite Reynolds
numbers. In Figure 9 the drag coefficient is presented for a much wider range of Reynolds
numbers, for solid fraction φ = 0·3. Results for flow along the diagonal symmetry axis θF =
π/4 are shown in Figure 10. The results for n = 0·5 and n = 1·5 are seen to be qualitatively
very similar to the results for Newtonian fluids. The drag coefficient increases according to
(12) only at small Reynolds numbers. At intermediate Reynolds numbers, the increase of Cd

with Re is more linear, and relatively small for on-axis flows. The drag force for on-axis flows
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Figure 8. Variation of the length scale Zij, defined
by (28), with solid area fraction φ, for power-law
coefficients n = 0·5 (open symbols) and n = 1·5
(filled symbols). Zij has been made dimensionless
with half the minimum gap size between the cyl-
inders Lg = ((φmax/φ)1/2 − 1)a. (�), Z11; (
),
Z22.

Figure 9. Variation of drag coefficient with Reyn-
olds number for on-axis, moderate Reynolds number
flows at solid area fraction φ = 0·3: (
), power-law
fluid with n = 0·5; (�), n = 1; (©), n = 1·5. Filled
symbols represent time-averaged values in unsteady
flow.

is expected to be smaller than for off-axis flows because each cylinder is shielded by another
one directly upstream.

Beyond a critical Reynolds number the flow becomes unsteady: the time signals go through
a sequence of period-doubling bifurcations [4]. In most cases presented here P2-oscillations
were observed; P4-oscillations occurred only at some of the largest Reynolds numbers studied
here. For these unsteady cases the drag coefficient and Reynolds number are based on the
time-averaged superficial fluid velocity (the force is held constant). The value of the critical
Reynolds number (denoted by Rec) increases with n. A significant contribution to this de-
pendence on n is caused by the choice of the viscosity scale in the definition of Re. The
results presented in the previous section suggest that any dependence on power-law index will
be minimal when using the Reynolds number R̂e (defined by (18)) with H/a = Lg/a =
(φmax/φ)−1/2 − 1. That is, by using a viscosity scale that is more appropriate for the flow
through the narrow gap between the cylinders. In Table 1 the values of Rec and R̂ec are
shown. Clearly, R̂ec is virtually the same for shear-thinning and Newtonian fluids. For shear-
thickening fluids (n = 1·5) the transition to unsteady flow occurs only at a somewhat larger
Reynolds number than expected from this scaling argument.

For on-axis flows, but not for the off-axis flows studied here, the drag coefficient is seen to
increase sharply beyond the critical Reynolds number. In the unsteady regime the form drag
is substantial due to the shedded recirculation zones, causing the drag force to be of O(ρaU 2)

such that the drag coefficient becomes a linear function of Reynolds number [4]. For off-axis
flows, the drag follows the same scaling even in steady flow, indicating that the form drag
is already significant. This is found not because of wake formation (which happens only just
before the onset of unsteady flow) but is caused by the strong curvature of the streamlines.
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Figure 10. Variation of drag coefficient with Reynolds number for off-axis, moderate Reynolds number flows
at solid area fraction φ = 0·3, with mean flow along the symmetry axis θF = π/4. (
), power-law fluid with
n = 0·5; (�), n = 1; (©), n = 1·5. Filled symbols represent time-averaged values in unsteady flow.

Table 1. Critical Reynolds number Rec beyond which the flow is unsteady

φ n Rec (θF = 0) Rec (θF = π/4) R̂ec (θF = 0) R̂ec (θF = π/4)

0.3 0.5 22.5–26.9 11.0–13.0 46.3–55.4 22.7–26.7

1 53.0–66.4 23.7–27.6 53.0–66.4 23.7–27.6

1.5 145–162 43.45–81.1 70.5–78.9 21.1–32.7

0.5 0.748 31.6–48 66.8–102

0.83 43.6–58.3 72.3–96.6

1 78.2–95.1 78.2–95.1

Experimental data for flows through tube banks at moderate Reynolds numbers have been
presented for Newtonian fluids by Bergelin [11, 12] and for inelastic non-Newtonian fluids by
Adams and Bell [8]. The same tube banks were used in both studies. An attempt to develop a
model for power-law fluid flows through tube banks was made by Prakash [9].

Amongst the tube arrangements that were studied, one was a square array with ten rows
of tubes and solid area fraction φ = 0·50. The experimental data presented for this case, with
n = 1, 0·83 and 0·748, are shown in Figure 11 together with the corresponding numerical
simulation results. Also shown are Ghaddar’s [3] numerical simulation results for n = 1, with
which our results are seen to agree well. Despite the significant scatter in the experimental
data, they appear to follow the same trends as the numerical simulation results. The drag coef-
ficients determined in the experiments are consistently somewhat larger than the computed
values for both power-law and Newtonian fluids and by about the same amount in each case.

There are several possible explanations for the observed differences. Antonopoulos and
Gosman [13] presented numerical simulations for flows of Newtonian fluids through arrays of
cylinders for a range of Reynolds numbers. They considered the flow through a large number
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Figure 11. Drag coefficient Cd versus Reynolds number for on-axis flows at moderate Reynolds number with
solid area fraction φ = 0·5. For clarity of presentation, the results for n = 0·748 have been shifted downwards by
100 units. (�), Newtonian fluid; (
), n = 0·83; (©), n = 0·748; (⊕), numerical simulation results by Ghaddar
[3] for n = 1; (+), experimental results by Bergelin et al. [11] for n = 1; (×), experimental results by Adams and
Bell [8] for n = 0·83; (∗), experimental results by Adams and Bell [8] for n = 0·748. Filled symbols represent
time-averaged values in unsteady flow.

of rows of cylinders and showed that the number of rows used by Bergelin et al. [11] was not
sufficient to eliminate entrance effects. Although the local pressure drop over each row hardly
changed beyond the third row of cylinders, the averaged pressure drop over the entire bank
required a far larger number of rows for convergence. This is caused by the pressure drop over
the initial row being larger than the fully-developed value by up to 50%, which is enough to
explain most of the discrepancy between experimental and simulation data in Figure 11.

Although it is difficult to be certain, the discrepancy does appear to increase with Reynolds
number. A further caution for comparing the simulation results with experimental data is that
three-dimensional flow structures develop near the side walls of the banks, which shorten
the effective length of the tubes, thereby increasing the drag coefficient. Also, the Reynolds
number of the flow based on the dimensions of the tube bank is of O(15Re), which may be
large enough for the velocity profile at the inlet to be significantly non-uniform. Some degree
of preferential flow could occur, or the flow could have become non-spatially-periodic due to
advection of vorticity through the tube bank.

The observed discrepancy between experiments and simulations would not have been vis-
ible had the results been presented in the same format as that adopted in [8, 11, 12]. The
experimental data were presented originally in terms of a friction factor f , in an attempt to
correlate the data for different fluids. As the friction factor varies strongly with Reynolds
number (roughly as the inverse), experimental data for tube banks are usually presented in
log-log graphs. Consequently, the detailed variation visible in Figure 11 is masked by the
strong trend of f ∼ Re−1.
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Figure 12. Dimensionless velocity variance compon-
ent in the main flow direction, R11, as a function
of the Reynolds number Re for on-axis flow at
solid area fraction φ = 0·3; (
), n = 0·5; (�),
n = 1; (©), n = 1·5. Filled symbols represent
time-averaged values for unsteady flows.

Figure 13. Dimensionless velocity variance compon-
ent perpendicular to the main flow direction, R22,
as a function of Reynolds number Re for solid area
fraction φ = 0·3. (�), on-axis flow of Newto-
nian fluid; (
), on-axis flow of power-law fluid with
n = 0·5; (©), n = 1·5. Filled symbols represent
time-averaged values for unsteady flows.

4.2. VELOCITY VARIANCES

The dimensionless velocity variance R11 is shown in Figure 12 for on-axis flow (n = 0·5, 1
and 1·5) at solid fraction φ = 0·3. For cases in which the flow was unsteady we have taken
the averages in the definition (22) over time as well as space. As with the drag coefficient, the
dependence of R11 on Reynolds number for power-law fluids is quantitatively very similar to
that for Newtonian fluids. A monotonic increase of R11 with Re is seen that is hardly affected
by the transition to unsteady flow.

The corresponding results for R22 are shown in Figure 13. As expected, in the range of Re
for which the flow is steady, R22 simply decreases as Re is increased. In the unsteady regime
this normal velocity variance suddenly increases, but is still much smaller than the value of
R11, indicating that although the recirculation zone between the cylinders becomes stronger,
the flow through the channels between the rows of cylinders is not strongly affected.

Results for off-axis flows at the symmetry angle (θF = π/4) are shown in Figure 14. In
this case R11 decreases initially with increasing Reynolds number, but this trend is reversed
at moderate Re. As with the other off-axis flow results, there is no significant change in the
trend at the transition to the unsteady regime. On the other hand, R12 almost levels off after
the transition to unsteady flow. All the results for flows at moderate Reynolds numbers of
power-law fluids with n = 0·5 or 1·5 are qualitatively similar to the results for Newtonian
fluids.
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Figure 14. Dimensionless velocity variance components Rij as functions of Reynolds number Re for off-axis flow
at the symmetry angle (θF = π/4) at solid area fraction φ = 0·3. R11: (
), n = 0·5; (�), n = 1; (©), n = 1·5.
R12: (∇), n = 0·5; (♦), n = 1; (�), n = 1·5. Filled symbols represent time-averaged values for unsteady flows.

5. Summary and conclusions

Numerical results have been presented for flows with inertia of inelastic non-Newtonian fluids
through square arrays of cylinders, using the truncated power-law fluid model. We have shown
that the inertial correction to the drag coefficient at small Reynolds numbers is quadratic in
the Reynolds number (cf.(12)). Results for the proportionality factor k2 of the first inertial
contribution have been presented for on-axis and off-axis flows. The dependence of k2 on
the power-law index for on-axis flows is shown to be caused mainly by the choice of length
scale in the definition of the Reynolds number. This is consistent with the results presented
in [1]. At small Reynolds numbers, the first inertial contribution to the velocity variances is
of the form (23) for on-axis flows. As with the drag coefficient, the strong dependence of
the proportionality factor (multiplying the square of the Reynolds number) on the power-law
index is essentially due to the choice of length scale in the definition of the Reynolds number.

At larger Reynolds numbers the drag coefficient increases with Reynolds number at a lower
than quadratic rate (approximately linearly for off-axis flow), up to the critical Reynolds
number, beyond which no stable steady solution is found. In the unsteady regime the drag
is dominated by form drag, and the drag coefficient is approximately linearly dependent on
Re. The value of the critical Reynolds number for power-law fluids depends on the power-law
index; scaling analysis shows how to relate the critical Reynolds number for a power-law fluid
to that for a Newtonian fluid. The velocity variances for Newtonian and shear-thinning fluids
are qualitatively similar functions of the Reynolds number throughout the Reynolds number
regime considered here.

Comparison of the simulation results for the drag coefficient with the experimental data of
Bergelin et al. [11, 12] and Adams and Bell [8] shows good agreement, although the latter
are somewhat larger than the former, which may be caused (as suggested in [13]) by entrance
effects in the experiments. The dependence of the drag coefficient on the Reynolds number is
not entirely clear in the experimental data because of the significant scatter in the data.



Flows of inelastic non-Newtonian fluids through arrays of aligned cylinders 97

Acknowledgements

This work has been made possible by a grant from the EPSRC (GR/M 39572) and has been
supported by QinetiQ, Vosper Thornycroft, Dowty Aerospace Propellers, AEA Technology
and BAE Systems. We would like to thank Mr. Li Ding and Prof. Robert L. Street of Stanford
University and Prof. C. Pozrikidis of the University of California at San Diego for valuable dis-
cussions. The authors gratefully acknowledge the computer facilities provided under EPSRC
grant GR/L86821.

References

1. P.D.M. Spelt, T. Selerland, C.J. Lawrence and P.D. Lee, Flows of inelastic non-Newtonian fluids through
arrays of aligned cylinders. Part 1. Creeping flows. Submitted to J. Eng. Math. (2005) 57–80.

2. D.A. Edwards, M. Shapiro, P. Bar-Yoseph and M. Shapira, The influence of Reynolds number upon the
apparant permeability of spatially periodic arrays of cylinders. Phys. Fluids A 2 (1990) 45–55.

3. C.K. Ghaddar, On the permeability of unidirectional fibrous media: a parallel computational approach. Phys.
Fluids 7 (1995) 2563–2586.

4. D.L. Koch and A.J.C. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned
cylinders. J. Fluid Mech. 349 (1997) 31–66.

5. C.C. Mei and J.-L. Auriault, The effect of weak inertia on flow through a porous medium. J. Fluid Mech.
222 (1991) 647–663.

6. R.B. Bird, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. New
York: John Wiley (1987) 649 pp.

7. S.J.D. D’Alessio and J.P. Pascal, Steady flow of a power-law fluid past a cylinder. Acta Mech. 117 (1996)
87–100.

8. D. Adams and K.J. Bell, Fluid friction and heat transfer for flow of sodium carboxy methylcellulose solutions
across banks of tubes. Chem. Eng. Prog. Symp. Ser. 64 (1968) 133–145.

9. O. Prakash, S.N. Gupta and P. Mishra, Newtonian and inelastic non-Newtonian flow across tube banks. Ind.
Eng. Chem. 26 (1987) 1365–1372.

10. D.V.N. Prasad and R.P. Chhabra, An experimental investigation of the cross-flow of power-law liquids past
a bundle of cylinders and in a bed of stacked screens. Can. J. Chem. Eng. 79 (2001) 28–35.

11. O.P. Bergelin, G.A. Brown, H.L. Hull and F.W. Sullivan, Heat transfer and fluid friction during viscous flow
across banks of tubes – III. A study of tube spacing and tube size. Trans. ASME 72 (1950) 881–888.

12. O.P. Bergelin, G.A. Brown and S.C. Doberstein, Heat transfer and fluid friction during viscous flow across
banks of tubes – IV. A study of the transition zone between viscous and turbulent flow. Trans. ASME 74
(1952) 953–960.

13. K.A. Antonopoulos and A.D. Gosman, The predicition of laminar inclined flow through tube banks. Comp.
Fluids 14 (1986) 171–180.




